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Optical pulse propagation in nonlinear photonic crystals
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We present a formalism for optical pulse propagation in nonlinear photonic crystals of arbitrary dimension-
ality. Using a multiple-scale analysis, we derive the dynamical nonlinear Schro¨dinger equation obeyed by the
envelope function modulating an underlying Bloch function. Effective coefficients appear in that equation
characterizing the effects of Kerr nonlinearity, linear gain or loss, and material dispersion. They depend on how
the underlying Bloch function ‘‘samples’’ these effects in the photonic crystal, and require for their calculation
a specification of these effects throughout the photonic crystal, and the calculated bandstructure of the photonic
crystals in the linear, nondispersive limit. We show that wave packets from different bands can experience
significantly modified effective material properties.
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I. INTRODUCTION

As codes become available for the calculation of photo
band structures, and the linear optical properties of photo
crystals become better understood, attention can shift to
nonlinear optical properties of these structures. Already th
have been studies of nonlinear effects by numerical sim
tions of the full nonlinear Maxwell equations@1,2#. While for
special problems this may remain the theoretical approac
choice, it is limited in that the underlying physics is n
immediately apparent from the results of the simulation.
well, the loss of superposition in nonlinear optics means t
any such simulation yields only limited insight into the ge
eral character of nonlinear propagation.

A different approach has been common for many year
the study of the nonlinear optical properties of on
dimensional photonic crystals, or ‘‘gratings.’’ In the pre
ence of a weak nonlinearity, effective field equations t
describe the dynamics of envelope functions are deri
from the nonlinear Maxwell equations@3#. At frequencies
near and within the band gap these can take the form
coupled mode equations, while at mid-band frequencies
a nonlinear Schro¨dinger equation that describes the evoluti
of the appropriate envelope function. In fact, a nonline
Schrödinger equation treatment can be applied even a
band edge, or within a band gap, if a pulse is not too sh
@4#. Properties such as the group velocity and group velo
dispersion, and the strength and spatial distribution of
nonlinearity, appear as parameters of these effective fi
equations. Once they are derived, a body of mathema
work devoted to the characterization of their solutions can
called on to obtain insight into the general nature of non
ear light propagation. This approach has led to the predic
and description of gap and Bragg solitons@5,6#, the under-
standing of various scenarios for all-optical switching@7#,
the description of the appearance of modulational instab
@8#, as well as the prediction of bistability and chaotic beha
ior in certain structures@9#.

Work along these lines for higher-dimensional photo
crystals has already appeared@10#, where coupled mode
equations were applied to study nonlinear field structure
two-dimensional structures. But those equations were
rived in a heuristic way analogous to that usually used
1063-651X/2001/64~5!/056604~16!/$20.00 64 0566
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weak one-dimensional gratings@11#. In higher-dimensional
photonic crystals, where the refractive index difference
tween components can be large, this approach is both t
retically suspect and in practice insufficient, in that it do
not yield parameters that adequately capture the co
quences of the spatial distribution of any underlying abso
tion or nonlinearity. For the realistic description of nonline
propagation in actual photonic crystals, a better approac
required.

Once again earlier work on one-dimensional structu
indicates a way to proceed. Some years ago@12# it was
shown how effective field equations could be derived even
the presence of strong refractive index variations. Employ
the exact Bloch functions of the corresponding linear pro
lem in the absence of any material dispersion, nonlinear
or gain or loss, a multiple-scales approach that treats th
latter effects as ‘‘small’’—in a sense that can be ma
precise—leads to the derivation of effective field equatio
The derivation yields parameters involving sums over p
tonic bands of various coefficients; their physical sign
cance is identified using results from a photonick•p theory
that parallels such a theory for electrons. Recently this
proach has been generalized to one-dimensional birefrin
structures@13#.

It is such an attack that is the subject of this paper, wh
we address higher-dimensional photonic crystals. We be
with the exact Bloch functions of the photonic crystal, whi
we assume have been found with the neglect of any mate
dispersion, gain or loss, or nonlinearity. This defines wha
essentially our ‘‘unperturbed’’ system. Our goal here is
treat the in-band propagation problem, at frequencies
moved from a possible photonic band gap, and where
band degeneracies can be neglected. We seek a solutio
the full nonlinear problem by modulating a Bloch functio
with an envelope function and deriving the dynamical eq
tion for that envelope function. We only consider a Ke
nonlinearity, linear loss or gain, and small material disp
sion, but various generalizations would follow immediate
A multiple-scales approach identifies the relative size of
different perturbing effects, and using it we derive a gen
alized nonlinear Schro¨dinger equation. From this we can im
mediately identify much of the physics of light propagatio
through the structure, such as an effectiven2 nonlinear co-
©2001 The American Physical Society04-1
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efficient and an effective loss or gain coefficient, as well a
group velocity and group velocity dispersion. All of the
depend crucially on how the underlying Bloch functio
‘‘samples’’ the appropriate perturbing effect in the photon
crystal. The nonlinear Schro¨dinger equation itself can b
used for a more detailed treatment of pulse propagation.

The analysis here is qualitatively more difficult than th
in the one-dimensional case because of the need to res
the divergence Maxwell equations,

“•D50,
~1!

“•B50,

that the full displacement fieldD and magnetic fieldB must
satisfy. It has already been pointed out@14# that these con-
straints make thek•p theory more complicated for photoni
crystals than it is for electronic crystals. As well, to ensu
that these equations are exactly satisfied by the inevita
approximate multiple-scales results, it is convenient no
work with the electromagnetic fields themselves as the b
fields of the theory, but rather with two vector potentials.
is usual in multiple-scales treatments, much of the effor
devoted to setting up the problem in a formalism that lead
the easy application of a multiple-scales approach. In Se
we identify the Bloch functions of the linear, nondispersi
Maxwell equations, and cast those equations in a ma
form that considerably simplifies thek•p treatment, the re-
sults of which play an essential role in the multiple-sca
analysis. In Sec. III we introduce the vector potentials and
up the full Maxwell equations for our problem. The multip
scales derivation is presented in Sec. IV, and in Sec. V
explicitly consider nonlinearity, material dispersion and ga
or loss at one particular level of scaling. In Sec. VI o
envelope function equation is derived, and the physical
nificance of the different parameters is identified. In Sec.
we calculate these for a well-studied photonic crystal a
illustrate how they can vary through a band. The road
various generalizations is indicated in Sec. VIII, as well
our conclusions.

II. BLOCH FUNCTIONS

Bloch functions of photonic crystals are most often fou
by identifying the stationary solutions of the so-called ‘‘ma
ter equation,’’ which is second order in time. However, f
our purposes it is more convenient to work with equatio
that are first order in time. In this section we describe
Bloch functions of the first order Maxwell equations, co
necting them with the Bloch functions of the master eq
tion. Next, we introduce a matrix formulation of Maxwell’
equations that will be convenient for later analytic manip
lations. Finally, we extend thek•p expansion of solid state
physics to this formalism.

A. Maxwell equations

The macroscopic electromagnetic fields satisfy two
namical equations,
05660
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Ḋ5“3H,
~2!

Ḃ52“3E,

which must be solved subject to initial constraints~1! and the
appropriate constitutive relations. In this section we ta
those to be

B~r ,t !5m0H~r ,t !, ~3!

D~r ,t !5«0n2~r !E~r ,t !, ~4!

wherem0 and«0 are, respectively, the permeability and pe
mittivity of free space, and the local index of refractionn(r )
is assumed real. For stationary solutions of the formE(r ,t)
5E(r )exp(2ivt), etc.,~1!,~2! then reduce to

2 iv«0n2~r !E~r !5“3H~r !,
~5!

ivm0H~r !5“3E~r !,

and

“•@n2~r !E~r !#50,
~6!

“•H~r !50.

We divide the solutions of Eqs.~5! and ~6! into two types,
type P1 with vÞ0 and typeP2 with v50.

For P1 solutions we need only require that the equatio
~5! be satisfied, since the divergence equations~6! then fol-
low immediately. From Eqs.~5! it is clear that if
„HI(r ),EI(r …… is a solution with frequencyv I , then
„HI* „r …,EI* (r …… is a solution with frequency2v I , a result of
time reversal symmetry. This has important consequen
for the nature of stationary solutions for photonic crysta
wheren(r )5n(r1R… for any lattice vectorR, that we iden-
tify below.

For a photonic crystal, Bloch’s theorem guarantees t
the stationary solutions can be chosen to be of the form

Hmk~r !5hmk~r …eik"r,
~7!

Emk~r !5emk~r …eik•r,

where the crystal wave vectork lies in the first Brillouin
zone, m is a band index, andhmk(r …5hmk(r1R…, emk(r …
5emk(r1R) for any lattice vectorR. Using Eq.~7! in the
complex conjugate of Eq.~5! it follows that, associated with
each solution „Hmk(r ),Emk(r …… with frequency vmk.0,
there is another solution„2hmk* (r …e2 ik•r,emk* (r …e2 ik•r

… with
the same frequency; it is therefore proportional to one of
stationary solutions with crystal wave vector2k. We can
link these two by adopting a standard phase convention
putting hm(2k…(r …52hmk* (r … and em(2k…(r )5emk* (r ). Then
„Hm(2k…(r ),Em(2k)(r )…5„2Hmk* (r ),Emk* (r )… is the solution
associated with crystal wave vector2k and frequencyvmk .
Finally, adopting another phase convention by defin
hm̄k(r )52hmk(r … and em̄k(r )5emk(r ), and where we put
„Hm̄k(r ),Em̄k(r ……5„hm̄k(r )eik•r,em̄k(r …e

ik•r
…, we see that
4-2
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„Hm̄k(r ),Em̄k(r )…5„Hm(2k)* (r ),Em(2k)* (r )… is the solution of
Eq. ~5! corresponding to crystal wave vectork and
frequency2vmk , which we define asvm̄k .

In summary, if (Hmk ,Emk) is a solution of Eqs.~5! with
crystal wave vector k and frequency vmk , then:
(Hm̄k ,Em̄k)5(Hm(2k)* ,Em(2k)* )5(2Hmk ,Emk) is the corre-
sponding solution with crystal wave vectork and
frequency vm̄k52vmk ; (Hm(2k) ,Em(2k))5(Hm̄k

* ,Em̄k
* )

5(2Hmk* ,Emk* ) is the corresponding solution with cryst
wave vector 2k and frequency vm„Àk…5vmk ;
(Hm̄(2k) ,Em̄(2k))5(2Hm(2k) ,Em(2k))5(Hmk* ,Emk* ) is the
corresponding solution with crystal wave vector2k and fre-
quency vm̄(2k)5vm̄k . These relations are indicated sch
matically in Fig. 1.

Since we can findEmk(r ) from Hmk(r ) andvmk using the
first of Eqs.~5!, the specification ofHmk(r ) ask ranges over
a half of the Brillouin zone that does not include2k if it
includesk ~such as the regionkz>0) is sufficient to identify
both the solutions associated with thevmk and thevm̄k over
the entire Brillouin zone. ThoseHmk(r ) are often found by
solving for the eigenfunctions of the master equation,

“3F 1

n2~r !
“3Hmk~r !G5

vmk
2

c2
Hmk~r !, ~8!

which follows immediately from Eq.~5!.
It follows from Eq. ~8! that two eigenfunctions with dif-

ferent eigenvalues are orthogonal, as are of course two ei
functions with different crystal wave vectors. We choose
generate eigenfunctions at the same wave vector so that
are mutually orthogonal, and normalize the eigenfunctio
according to

m0

«0
E d3r

V
Hmk* ~r !•Hm8k8~r !5dmm8dkk8 , ~9!

whereV is the normalization volume. It then follows from
Eqs.~5! that

FIG. 1. Schematic diagram of the relationship between soluti
at 6v and6k.
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V
n2~r !Emk* ~r !•Em8k8~r !5dmm8dkk8 , ~10!

and that theEmk(r ) are dimensionless.
Turning to typeP2 solutions, we have both“•H50 and,

from the first of Eqs.~5!, “3H50. The only solutions of
these equations subject to periodic boundary conditions o
our normalization volume are those of uniformH. From the
remaining equations~5! and ~6! we find

“3E~r !50,
~11!

“•@n2~r !E~r !#50.

Typically there are only solutions of these equations ak
50. But in any case the conditions onH(r ) and E(r ) de-
couple for typeP2 solutions. Arbitrary solutions of typeP2
can be written as linear combinations of typeP2 solutions
with E50 and typeP2 solutions withH50. We return to
these in the next section.

B. Matrix eigenvalue equation

While the master equation~8! is the eigenvalue equatio
that is probably most often used to find the photonic Blo
functions, for analytic manipulations it is easier to work wi
a matrix eigenvalue equation. The two equations~5! can be
written as

M3F5vnF, ~12!

where we have introduced the column of complex vec
fields

F5S 1

2
An~r !E~r !1

i

2
A m0

«0n~r !
H~r !

1

2
An~r !E~r !2

i

2
A m0

«0n~r !
H~r !

D , ~13!

the matrixn is just the unit matrix times the index of refrac
tion,

n5S n~r ! 0

0 n~r !
D , ~14!

and the Hermitian matrix operatorM is given by

M5S c“ 2
c“n~r !

2n~r !

c“n~r !

2n~r !
2c“

D . ~15!

Here and in equations below the combination of vector cr
product and matrix multiplication is handled in the obvio
way; for example, writing

F5S f1~r !

f2~r !
D , ~16!

s

4-3
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we have

M3F[S c“3f1~r !2
c“n~r !

2n~r !
3f2~r !

c“n~r !

2n~r !
3f1~r !2c“3f2~r !

D . ~17!

We divide the solutions of Eq.~12! into those of typeT, for
which vÞ0, and typeL for which v50.

For a photonic crystal, the case of interest,M and n in-
herit the periodicity of the index of refraction, and hence
can seek solutions of Eq.~12! in Bloch form

Fak5Uake
ik•r, ~18!

wherea labels the different solutions at a givenk,

Uak5S uak
1 ~r !

uak
2 ~r !

D , ~19!

anduak(r )5uak(r1R) for any lattice constantR. Since the
equation~12! is equivalent to equations~5!, there is a one-
to-one relation betweenP1 solutions andT solutions. We
thus haveT solutionsFmTk of Eq. ~12! with v5vmk , andT
solutionsFm̄Tk of Eq. ~12! with v5vm̄k , where

Um̃Tk5S 1

2
An~r !em̃k~r !1

i

2
A m0

«0n~r !
hm̃k~r !

1

2
An~r !em̃k~r !2

i

2
A m0

«0n~r !
hm̃k~r !

D , ~20!

here and below we usem̃ to indicate eitherm or m̄, and we
use the subscriptT to distinguish between the typeT solu-
tions and the typeL solutions, denotedFm̃Lk , that we dis-
cuss below. Note thatFm̄Tk5F̄mT(2k) , where for everyF
of the form ~16! we define

F̄[S @f2~r !#*

@f1~r !#* D . ~21!

The typeL solutions satisfyM3F50, or

“3H50,

“3E50. ~22!

Hence, as forP2 solutions, we can separately considerL
solutions for whichE50 and those for whichH50. But
while there will beFm̃Lk solutions that correspond toP2
solutions, there will be others as well, since the electric a
magnetic fields associated withL solutions need not satisf
Eq. ~6! while those ofP2 solutions must. The presence
such extra, unphysical solutions of eigenvalue equations
sociated with photonic crystal problems is not unusual;
example, the master equation~8! has unphysical solutions a
v50 that do not satisfy“•H50 @14#. As in the analysis of
that equation, we will typically not need to explicitly con
05660
d
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struct these unphysical solutions. But it will be important
identify their form and, at least in principle, enumerate the

We now turn to theL solutions. There are a host of thes
solutions characterized by any given crystal momentumk,
which all satisfy equation~12! with eigenvalue zero. None
theless, to maintain a consistent notation below, we la
these by subscriptsmLk, wherem simply labels the different
L solutions with crystal momentumk. Consider first theL
solutions for which the associatedE50, which we denote by
FmLk8 . We can form a complete set of these solutions
taking

FmLk8 5
i

A2n~r !
Lmk~r !S 1

21D , ~23!

where for each crystal wave vectork and each reciproca
lattice vectorGm we have a longitudinal field

Lmk~r !5y~k1Gm!ei (k1Gm)•r, ~24!

where for a general vectorV we have set

y~V!5V/uVu. ~25!

As k ranges over the first Brillouin zone andGm ranges over
the reciprocal lattice,k1Gm ranges over all of reciproca
space; thus theLmk(r ) form a basis set for expanding a
longitudinal functions. Uniform solutions (k5Gm50) are a
special case; these are both longitudinal and transverse,
instead of one basis function we in fact have three. We
take these to be, for example,L (x)00(r )5 x̂, L (y)00(r )5 ŷ,
and L (z)00(r )5 ẑ. The F( i )0̄L0

8 columns associated with th
fields L ( i )00(r ) correspond toP2 solutions; typically the re-
mainingL solutions with vanishingE are not solutions of the
full set of Maxwell equations.

To construct theL solutions for which the associatedH
50, we take

FmLk9 5An~r !

2
Jmk~r !S 1

1D , ~26!

where, at a givenk, we assemble theJmk(r ) by including
first the electric fields of any typeP2 solutions, orthogonal-
ized and normalized according to Eq.~10!. We add to these
a set of solutions at each crystal wave vectork that can be
obtained by starting with anLmk(r ), Gram-Schmidt orthogo-
nalizing according to Eq.~10! to any of the typeP2 solutions
at that k, and to any other irrotational solutions at thatk
already so identified. Carrying this procedure to the exha
tion of the Lmk(r ), a complete set of irrotational solution
orthogonalized according to Eq.~10! can, in principle, be
identified. Of these, only theJmk(r ) of the P2 solutions are
solutions to the full Maxwell equations~5! and ~6!.

Instead of the solutionsFmLk8 and FmLk9 , for which E
50 and H50, respectively, it is more convenient to wor
with columns that, likeFm̃Tk , have both an associatedE and
H field. We therefore introduce
4-4
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FmLk[
1

A2
~FmLk8 1FmLk9 !,

~27!
Fm̄Lk[F̄mL(2k) .

All the columnsFm̃Sk thus identified, wherem̃ is anm or an
m̄, andS is T or L, are orthonormalized usingn as a metric

E d3r

V
Fm̃Sk

†
•nFm̃8S8k85dm̃m̃8dSS8dkk8 , ~28!

and we have defined the row

Fm̃Sk
†

5„~fm̃Sk
1

!* ~fm̃Sk
2

!* …, ~29!

etc. The orthonormalization condition~28! is easily con-
firmed using the orthogonality conditions~9! and ~10!, the
fact that the integral of the dot product of a~nonuniform!
longitudinal field and a~nonuniform! transverse field van
ishes, and the conditions given after Eq.~6!.

For convenience we will denote (m̃S) by a. Likewise, if
m̃5m and S5T we let vak indicatevmk , while if m̃5m̄
and S5T we let vak indicate vm̄k ; if S5L we put vak
50. Finally, for k85k the condition~28! leads to an ortho-
normality condition for theUak ,

E
cell

d3r

Vcell
Uak

†
•nUa8k5daa8 , ~30!

wheredaa85dm̃m̃8dSS8 , Vcell is the volume of the unit cell,
and the integral ranges over the unit cell.

Finally, we note from~13! and ~18! and the following
equations we have, forS5T,

Eak~r !5
fak

1 ~r !1fak
2 ~r !

An~r !
,

~31!

Hak~r !52 iA«0n~r !

m0
@fak

1 ~r !2fak
2 ~r !#,

where the functionsEm̃Tk(r ) and Hm̃Tk(r ) are simply the
functionsEm̃k(r ) and Hm̃k(r ) identified by Eq.~7! and the
following discussion. ForS5L we take Eq.~31! to be the
definitions ofEak(r ) andHak(r ). Then from Eqs.~5! for S
5T, and Eq.~22! for S5L, we have

2 ivak«0n2~r !Eak~r !5“3Hak~r !,
~32!

ivakm0Hak~r …5“3Eak~r !,

for both types of solutions. Further, the conditions~9! and
~10! that hold forEmk(r … andHmk(r ) also hold, by construc-
tion, for all theEm̃Sk(r ) andHm̃Sk(r ). That is, we have

m0

«0
E d3r

V
Hak* ~r !•Ha8k8~r !5daa8dkk8 ~33!
05660
E d3r

V
n2~r !Eak* ~r !•Ea8k8~r !5daa8dkk8 .

C. k"p equations

An advantage of working with the matrix eigenvalu
equation~12! is that thek•p expansion takes a much simple
form than if, say, one works with the master equation~8!
@14#. Using the Bloch form~18! in the matrix eigenvalue
equation, we find the equation that the periodic partUak of
that Bloch function must satisfy,

H~k!3Uak5vaknUak , ~34!

whereH(k)[M1v(k), and

v~k![S ick 0

0 2 ickD . ~35!

We now expand in the usual way about a given wave vec
k0,

@H~k0!1v~k!#3Uak5vaknUak , ~36!

wherek[k2k0. Although generalization is easily done, fo
simplicity we here choose an (ak) such that the indicated
band is nondegenerate; this of course requires thatS5T.
Then we can expandvak aboutk0,

vak5vak0
1k ivak0

i (1)1k ik jvak0

i j (2)1O~k3!, ~37!

where thevak0

i (1) andvak0

i j (2) are expansion coefficients, and th

superscripts indicate Cartesian components that are sum
over when repeated. We use theUbk0

as a basis for expand

ing Uak ,

Uak5Uak0
1k i(

b
8 ab

i (1)Ubk0
1k ik j(

b
8 ab

i j (2)Ubk0

1O~k3!, ~38!

where theab
i (1) andab

i j (2) are expansion coefficients, and w
only sum over the bands as indicated; the prime denotes
the a band is omitted from the sum. This will simplify th
following derivation, at the cost of foregoing normalizatio
~30! of theUak ; that can always be done later and, since o
main interest is in extracting thevak0

i (1) andvak0

i j (2) , it will not

be a concern. We do assume that theUbk0
satisfy the nor-

malization condition~30!.
Inserting Eqs.~37! and ~38! into Eq. ~36!, we collect

terms according to their order ink. The zeroth order terms
give Eq. ~34! with k replaced byk0. The first order terms,
when simplified using the eigenvalue equation~34! for Ubk0

,
yield

vak0

i (1)5vaa
i ~k0! ~39!

when dotted intoUak0

† and integrated over a unit cell usin

Eq. ~30!, and
4-5
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ab
i (1)52

vba
i ~k0!

vbk0
2vak0

~40!

when dotted into one of theUbk0

† , with bÞa, and integrated

over a unit cell. Here we have defined

va8a~k![2 i E
cell

d3r

Vcell
Ua8k

†
3VUak ~41!

for arbitrarya8, a, andk, and

V[S c 0

0 2cD . ~42!

Similarly, the second order terms yield

vak0

i j (2)52(
b

8
vab

j ~k0!vba
i ~k0!

vbk0
2vak0

~43!

when dotted intoUak0

† and integrated over a unit cell usin

Eq. ~30!, after substituting Eq.~40! in the result. From Eq.
~37! and its derivatives aboutk50, we can use Eqs.~39! and
~43! to identify the general expressions

]vak

]ki
5vaa

i ~k!, ~44!

and

]2vak

]ki]kj
522(

b
8

vab
i ~k!vba

j ~k!

vbk2vak
, ~45!

for a banda that is nondegenerate atk; these are the main
results of this section. Working out the expression~41! in
terms of the photonic band functions~31!, we find

va8a~k!5
1

2«0
E

cell

d3r

Vcell
@Ea8k

* ~r !3Hak~r !1Eak~r !

3Ha8k
* ~r !#. ~46!

The velocity matrix element between twoL states vanishes
since both the electric and magnetic fields in those states
longitudinal. Quite generally the matrix elements betwe
two T states, and between aT state and anL state, will be
nonzero. The diagonal matrix element

vaa~k!5
1

«0
E

cell

d3r

Vcell
Re@Eak* ~r !3Hak~r !# ~47!

is proportional to the time average of the Poynting vec
averaged over the Bloch state, as might be expected sin
is the group velocity~44! associated with that Bloch state
However, this simple relation between the group veloc
and the average Poynting vector in a photonic crystal d
not seem to have been realized before. Finally, we note
the sum in the expression~45! for the group velocity disper-
sion involves both physicalT states and unphysicalL states.
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As in the corresponding expression for the group veloc
dispersion that can be derived from the master equation~8!
@14#, the part of that sum involving unphysical states can
written in terms of physical states, yielding an express
involving a sum over only physical states. We do not pres
that here because it will not be of use to us. Of course
most practical applications of thek•p method it is only
bandsb that are close in frequency to the banda of interest
that will make a significant contribution to the sum~45!.

III. DYNAMICAL EQUATIONS

We now set up the full dynamical field equations. Inste
of the simple constitutive relation~4! for the displacement
field, we now consider the more general form

D~r ,t !5«0n2~r !E~r ,t !1P~r ,t !, ~48!

where the additional polarizationP(r ,t) describes the non
linear response as well as material dispersion and gain or
in the media. We will turn to the expression forP(r ,t) in the
following section. Using the constitutive relations~3! and
~48! in the Maxwell curl equations~2!, we find

«0n2~r !Ė~r ,t !5“3H~r ,t !2Ṗ~r ,t !,
~49!

m0Ḣ~r ,t !52“3E~r ,t !

as the dynamical equations that the fieldsE(r ,t) andH(r ,t)
satisfy. But these equations must be solved subject to
initial conditions ~1!. Particularly in the context of the
multiple-scales analysis that we will introduce, these init
conditions are not easy to implement; it is generally easie
work with dynamical equations that are not so restricted.
can do this by introducing potentials that automatically gu
antee Eq.~1! in the following way. For any reasonable, no
uniform initial fields B and D satisfying Eq.~1!, we can
introduce potentialsA andN,

B5“3A,

D52“3N ~50!

that so describe those fields. Then it is easy to confirm t
for fieldsB andD given by Eq.~50! at later times, the Max-
well equations~2! are satisfied, along with the constitutiv
relations~3! and ~48!, if the potentialsA and N satisfy the
dynamical equations

«0n2~r !Ȧ„r ,t)5“3N~r ,t !1P~r ,t !,

m0Ṅ„r ,t)52“3A~r ,t !. ~51!

These we will take as our basic dynamical equations; cle
there are no subsidiary conditions that initial values ofA and
N must satisfy. Once the potentials are found at later tim
from Eqs.~51!, the electromagnetic fields themselves can
obtained from Eqs.~50! and the constitutive relations~3! and
~48!.
4-6
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It is convenient to write the dynamical equations~51! in
matrix form as

in
]C

]t
5M3C1 i J, ~52!

where the columnC of complex vector fields is given by

C5S 1

2
An~r !A~r ,t !1

i

2
A m0

«0n~r !
N~r ,t !

1

2
An~r !A~r ,t !2

i

2
A m0

«0n~r !
N~r ,t !

D , ~53!

and the column

J5j~r ,t !S 1

1D , ~54!

where

j~r ,t ![
P~r ,t !

2«0An~r !
~55!

is purely real. Note that not any arbitrary column of compl
vector fields,

C5S c1~r ,t !

c2~r ,t ! D ~56!

will represent real potentialsA(r ,t) andN(r ,t) according to
Eq. ~53!; however, given an arbitrary columnC we can con-
struct a columnC1C̄ representing real potentials, whe
the physical conjugateC̄ of a column vector~56! is defined
according to

C̄5S @c2~r ,t !#*

@c1~r ,t !#* D . ~57!

~cf. the corresponding expression~21! for eigenfunctions of
M). Typically we will write a column~53! as C11C2 ,
whereC2[C̄1 . Defining the operator

£[ in
]

]t
2M3, ~58!
o

ro
an
d

05660
we see that the physical conjugate of £C1 is 2£C2 .
Hence, if we likewise haveJ5J11J2 and satisfy

£C15 i J1 , ~59!

then the dynamical equations~52! will be satisfied. It is this
last equation that we will reduce by a multiple-scal
analysis.

IV. MULTIPLE SCALES

In order to reduce Eq.~59! to a simpler form, we use the
asymptotic method of multiple scales. We seek to scale
physical parameters in Eq.~59! to a small parameterh, then
keep terms in Eq.~59! up to a given order inh. By satisfying
Eq. ~59! to successively higher orders inh, we will better
capture the dynamics of the exact solution, in an asympt
sense.

A. Fields

In the absence of nonlinearity, material dispersion, a
gain or loss, the general the solution of Eq.~59! is of the
form

C15a(
b,k

f bkFbke
2 ivbkt, ~60!

where f bk are dimensionless coefficients used to expand
bitrary initial conditions in terms of the complete set
eigencolumnsFbk , and wherea carries the units ofC1 . By
construction, the subsequent dynamics are linear, so tha
the presence of nonlinearity, it is not possible to form
exact solution using Eq.~60!. One way of proceeding is to
solve the nonlinear eigenproblem@2#; however, this ap-
proach does not give propagating pulse solutions, and
loss of linear superposition precludes a general solution
the form~60!. Even in the absence of nonlinearity an expa
sion ~60! may not be the best way to identify the nature
the solution. So we construct approximate solutions of
~59! by replacing the constant coefficientsf bk in Eq. ~60!
with functions f bk(r ,t) that vary slowly in space and time
Furthermore, to keep track of the ‘‘slowness,’’ we explicit
separate different length and time scales in the problem
introducing a small parameterh and writing functions as
f ~r ,t !5F~x,hx,h2x . . . ,y,hy,h2y . . . ,z,hz,h2z . . . ;t,ht,h2t, . . . ![F~r0 ,r1 ,r2 , . . . ;t0 ,t1 ,t2 , . . . !, ~61!
for
whereF is assumed to vary equally significantly as each
its arguments varies over a ranged, or a periodt. These are
chosen to be the shortest length and time scales in the p
lem; d, for example, is taken as the size of a lattice const
andt will be identified below. Then the ranges and perio
d(p)5d/hp and t (p)5t/hp for p50,1,2••• define the mul-
f

b-
t

s

tiple scales of the problem. Derivatives are given by,
example,

] f ~r ,t !

]t
5

]F

]t0
1h

]F

]t1
1h2

]F

]t2
1•••. ~62!
4-7
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We will be looking at situations in which one of th
f ak(r ,t) will be larger than the rest. This will be called th
principal component, and we takea to identify one of the
physical (S5T) solutionsF of the matrix equation~12! dis-
cussed in Sec. II; we further identify the shortest time sc
of the problem to be the period associated withvak , t
52p/vak . Other components, labeled byb and called com-
panion components, will have amplitudes smaller by a fac
of h. The case of two principal components has been c
sidered in one dimension@12#, but for our purposes here on
principal component will suffice. Then we seek an appro
mate solution of the form,C5C11C2 , where C2

5C̄1 , and

C15aS f ak~r ,t !Fak1(
b

8 f bk~r ,t !FbkD e2 ivakt0,

~63!

where the prime denotes exclusion of the principal, ora
band. To capture the amplitude scaling of the principal (a)
and companion (bÞa) components, we take

f ak~r ,t !5Fak
(0)~r1 ,r2 , . . . ;t1 ,t2 , . . . !

~64!
f bk~r ,t !5hFbk

(1)~r1 ,r2 , . . . ;t1 ,t2 , . . . !

1h2Fbk
(2)~r1 ,r2 , . . . ;t1 ,t2 , . . . !.

Note that these slowly varying quantities have no dep
dence onr0 or t0, and that the amplitudes of companio
components are smaller than that of the principal compon
by a factor ofh. Hereafter the arguments of theF will be
kept implicit. To identify h, we look at the rangeL over
which f ak(r ,t50) varies, and set

h5
gd

L
, ~65!

whereg is a factor of order unity that we will set later t
guarantee consistency. This identification ofh means that
the first variation ofC1 through space, above and beyond
dependence over a distanced through the Bloch function, is
through its dependence onr1.

From the dependence ofC on N andA ~53!, we see that
this C1 leads to an

N~r ,t !5aS Fak
(0)Hak~r !1(

b
8 @hFbk

(1)1h2Fbk
(2)

1•••#Hbk~r ! D e2 ivakt01c.c., ~66!

where we have used Eq.~31! for the photonic band function
associated with theFgk . We can now determineD(r ,t)
from its expression~50! in terms of the potentialN(r ,t), and
then use the constitutive relation~48! to identify E(r ,t). In
doing so we anticipate a result of the following section th
P(r ,t) will be of orderh2; we then find

E~r ,t !5E1~r ,t !1c.c.5E~r ,t !e2 ivakt01c.c., ~67!
05660
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where

E~r ,t !5 ivakaFak
(0)Eak~r !1O~h! ~68!

contains no dependence ont0. Here we have used the rela
tions ~32! that the fieldsEak(r ) and Hak(r ) satisfy. From
this result we see thatvaka is a characteristic size of th
electric field; we henceforth denote it by

e0[vaka. ~69!

We can also identify

]E~r ,t !

]t
5 ie0h

]Fak
(0)

]t1
Eak~r !1O~h2!,

~70!

]2E~r ,t !

]t2
5O~h2!,

expressions that will be used in a following section.

B. Multiple-scales expansion

We now construct an expansion of £C1 in powers ofh,

£C15~£C1!(0)1h~£C1!(1)1h2~£C1!(2)1•••

~71!

for the C1 given above Eq.~63!. To construct this we need
the corresponding expansions of the terms that appear
~58!. These are simply

]

]t
5

]

]t0
1h

]

]t1
1h2

]

]t2
1••• ~72!

and

M5M(0)1hM(1)1h2M(2)1•••, ~73!

where

M(0)5S c“ (0)
2

c“ (0)n~r0!

2n~r0!

c“ (0)n~r0!

2n~r0!
2c“ (0)

D ~74!

and, for j .0,

M( j )5S c“ ( j ) 0

0 2c“ ( j )D 5V“ ( j ), ~75!

where“ ( j ) denotes the gradient with respect tor j . Collect-
ing all the terms and using the fact that theFgk are eigen-
functions of the operatorM(0), we find (£C1)(0)50 while
4-8
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a21eivakt0~£C1!(1)5 i
]Fak

(0)

]t1
nFak1VFak3“

(1)Fak
(0)

1(
b

8 ~vak2vbk!Fbk
(1)nFbk ,

~76!

and

a21eivakt0~£C1!(2)5 i
]Fak

(0)

]t2
nFak1VFak3“

(2)Fak
(0)

1(
b

8 S i
]Fbk

(1)

]t1
nFbk1VFbk

3“

(1)Fbk
(1)D 1(

b
8 ~vak

2vbk!Fbk
(2)nFbk . ~77!

In the absence of any nonlinearity, dispersion, or gain
loss, our equation~59! would simply require that (£C1)(1)

and (£C1)(2) vanish. The results for this special case can
extracted from the more general analysis we present belo
take into account a nonvanishingJ.

V. NONLINEARITY, MATERIAL DISPERSION,
AND GAIN OR LOSS

We now turn to the general form of the constitutive re
tions that we adopt, and identify theP(r ,t) that appears in
the relation~48! betweenD(r ,t) and E(r ,t) that we have
assumed above. Instead of the constitutive relations~3! and
~4! we adopt the relations

B~r ,t !5m0H~r ,t !,
~78!

D~r ,t !5DL~r ,t !1PNL~r ,t !,

wherePNL(r ,t) is a nonlinear contribution to the polarizatio
that we will discuss shortly, and the linear response is ta
to be of the form

DL~r ,t !5E
2`

t

«~r ,t2t8!E~r ,t8!dt8. ~79!

The form of the linear response is general enough to incl
material dispersion and gain or loss, and could be ea
extended to include material birefringence; in photonic cr
tals,«(r ,t)5«(r1R,t) for any lattice vectorR.

A. Linear response

We introduce Fourier transforms of our fields in the us
way,

E~r ,t !5E
2`

1`dv

2p
E~r ,v!e2 ivt, ~80!
05660
r

e
to

-

n

e
ly
-

l

etc., but useDv to denote the Fourier transform variable
E(r ,t). UsingDL1(r ,t) to denote the portion ofDL(r ,t) ob-
tained by using onlyE1(r ,t) in Eq. ~79!, taking the Fourier
transform yields

DL1~r ,vak1Dv!5«~r ,vak1Dv!E~r ,Dv!. ~81!

Now sinceE(r ,t) only contains time dependence throug
variablest j for j .0, the Fourier componentsDv that are
important inE(r ,Dv) satisfyuDvu!vak . Hence we are led
to expand

«~r ,vak1Dv!5«~r ,vak!1~Dv!«8~r !1
1

2
~Dv!2«9~r !

1•••, ~82!

where«8(r )[]«(r ,vak)/]vak , «9(r )[]2«(r ,vak)/]vak
2 ,

etc. We now introduce a nominal real refractive indexn(r )
by putting

«~r ,vak!5«0n2~r !1«C~r !, ~83!

where the ‘‘correction’’ permittivity«C(r ) is given by

«C~r !5Re@«~r ,vak!#2«0n2~r !1 i Im@«~r ,vak!#.
~84!

The obvious choice forn(r ) is to set Re@«(r ,vak)#
2«0n2(r )50, but to describe electro-optic modifications
the dielectric constant it may be convenient to choose a
ferent nominal indexn(r ). Using Eqs.~82!–~84! in the ex-
pression~81! for DL1(r ,v), we inverse Fourier transform to
identify DL1(r ,t), partially integrating to eliminate the pow
ers of Dv; adding in the complex conjugate leads to t
result

DL~r ,t !5«0n2~r !E~r ,t !1PL~r ,t !, ~85!

where

PL~r ,t !5«C~r !E~r ,t !e2 ivakt1 i«8~r !e2 ivakt
]E~r ,t !

]t

2
1

2
«9~r !e2 ivakt

]2E~r ,t !

]t2
1•••1c.c. ~86!

B. Nonlinear response

Turning to the nonlinear response, we assume the non
earity is weak and due to a third-order response that, at
quencies of interest, is far off resonance. Then an approp
model for the nonlinear polarizationPNL(r ,t) is

PNL
i ~r ,t !5«0x3

i jkl ~r !Ej~r ,t !Ek~r ,t !El~r ,t !, ~87!

where the third-order susceptibility is purely real, is u
changed under any permutation of the Cartesian compone
and exhibits the periodicity of the photonic crystal,x3

i jkl (r )
4-9
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5x3
i jkl (r1R), whereR is any lattice vector. Using the ex

pression~67! for the electric fieldE(r ,t), this expression
reduces to

PNL
i ~r ,t !53«0x3

i jkl ~r !E j~r ,t !E k~r ,t !@E l~r ,t !#* e2 ivakt

1c.c., ~88!

when we neglect third harmonic generation terms. Th
Fourier components ofPNL(r ,t), centered at 3vak and
23vak are typically non-phase-matched and, in any ca
are usually at frequencies high enough where absorptio
sufficient that significant fields at these frequencies are
generated. Exceptions to this have been considered in
dimensional structures@15#, but will not be considered here

C. Scaling

We can now identify theP(r ,t) in our posited expression
~48! as

P~r ,t !5PL~r ,t !1PNL~r ,t !, ~89!

with the linear and nonlinear contributions given by Eq
~86! and ~88!, respectively. In order to writeP(r ,t) in pow-
ers of h, we need to scale the magnitudes
«C(r ), «8(r ), «9(r ), andx3

i jkl (r ) to powers ofh. For the
linear response we assume

«C~r !5h2«̂C~r !,

«8~r !5h
«̂8~r !

vak
, ~90!

«9~r !5h
«̂9~r !

vak
2

,

where«̂C(r ), «̂8(r ), and «̂9(r ) have dimensions of permit
tivity and are assumed to be on the order of the largest lin
media permittivity, or smaller. Using these expressions
our result~86! for PL(r ,t), along with the expressions~68!
and ~70! for E(r ,t) and its derivatives, we find that our ex
pansion forPL(r ,t) begins with orderh2,

PL~r ,t !5h2PL
(2)~r ,t !1•••, ~91!

where

PL
(2)~r ,t !5F ivakaFak

(0)«̂C~r !2a
]Fak

(0)

]t1
«̂8~r !GEak~r !e2 ivakt

1c.c. ~92!

Turning to the nonlinear polarization, the strength of t
nonlinear polarization is characterized byx3

i jkl (r )e0
2, and

here we will assume the scaling

x3
i jkl ~r !e0

25h2g i jkl ~r !, ~93!
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where«0g i jkl (r ) has units of permittivity and is assumed
be on the order of the largest linear media permittivity,
smaller. Using Eq.~93! in our result~88! for PNL(r ,t), we
find that the expansion for that term also begins with or
h2,

PNL~r ,t !5h2PNL
(2)~r ,t !1•••, ~94!

where

PNL
i (2)~r ,t !53ivaka«0Fak

(0)uFak
(0)u2g i jkl ~r !Eak

j ~r !Eak
k ~r !

3@Eak
l ~r !#* e2 ivakt1c.c. ~95!

Combining the linear~92! and nonlinear~95! contributions
to P(r ,t) Eq. ~89!, we see thatJ ~54! is indeed of the form
J11J2 , whereJ25J̄1 , with

J15h2J1
(2)1•••5h2j1

(2)S 1

1D 1••• ~96!

and

a21eivaktj1
i (2)5

ivak

2«0
Fak

(0)
«̂C~r !Eak

i ~r !

An~r !

2
1

2«0

]Fak
(0)

]t1

«̂8~r !Eak
i ~r !

An~r !

1
3

2
ivakFak

(0)uFak
(0)u2

3
g i jkl ~r !Eak

j ~r !Eak
k ~r !@Eak

l ~r !#*

An~r !
.

~97!

VI. ENVELOPE FUNCTION EQUATIONS

We are now in a position to implement the dynamic
equations~59! to orderh2. SinceJ1

(1)50, the orderh equa-
tions are simply (£C1)(1)50. Returning to the expressio
~76! for (£C1)(1), we first dot the orderh equation intoFak

†

and integrate overr0 to find

]Fak
(0)

]t1
1vaa

i ~k!
]Fak

(0)

]r 1
i

50, ~98!

while dotting that equation intoFbk
† , for bÞa, yields

Fbk
(1)52

ivba
i ~k…

~vak2vbk!

]Fak
(0)

]r 1
i

. ~99!

Here we have used the orthogonality conditions~28! as well
as the expression~41! for the velocity matrix element
va8a(k).

The orderh2 equations, (£C1)(2)5 iJ1
(2) , can be dealt

with in the same way. Dotting intoFbk
† , for bÞa, and
4-10
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integrating yields the equations forFbk
(2) for bÞa, which we

will not write down here. Dotting intoFak
† and integrating,

we obtain an equation that can be readily simplified. Us
the expression~99! for Fbk

(1) , we find the resulting expressio
involves a sum that can be identified as the group velo
dispersion~45!. We can also use Eq.~98! to write ]Fak

(1)/]t1

in terms of the]Fak
(1)/]r 1

i . Our efforts yield

]Fak
(0)

]t2
1vaa

i ~k!
]Fak

(0)

]r 2
i

2
i

2

]2vak

]ki]kj

]2Fak
(0)

]r 1
i ]r 1

j

5
ivaksFak

(0)

h2
2

m

h

]Fak
(0)

]t1
1

iae0
2

h2
Fak

(0)uFak
(0)u2, ~100!

where we have defined coefficientss, m, anda in terms of
our original physical quantities,

s5
1

2Ecell

d3r

Vcell

«C~r !

«0
uEak~r !u2,

m5
1

2
vakE

cell

d3r

Vcell

«8~r !

«0
uEak~r !u2, ~101!

a5
3

2
vakE

cell

d3r

Vcell
x3

i jkl ~r !@Eak
i ~r !#* Eak

j ~r !Eak
k ~r !

3@Eak
l ~r !#* .

Each of Eqs.~98!, ~99!, and ~100! must be consistent with
our scaling assumptions. That is, theFak

( i ) andFbk
( i ) must all be

of order unity~or less!, and vary equally significantly as eac
of its spatial and temporal arguments vary overd and t,
respectively. A simple analysis here follows such an exa
nation in the one-dimensional case@12#. In particular, we
must satisfy the two derivative condition
u]Fak

(0)/]t1u, u]Fak
(0)/]t2u<uFak

(0)/tu5vakuFak
(0)u/(2p) and the

condition that uFbk
(1)u be of order unity or less. Sinc

u]Fak
(0)/]r 1

i u.uFak
(0)u/gd and u]2Fak

(0)/]r 1
i ]r 1

i u.uFak
(0)u/g2d2

Eq. ~65!, the first of the derivative conditions, together wi
Eq. ~98!, requires that we set

g>U 2p

vakd
vaa~k!U. ~102!

The third condition, together with Eq.~99!, requires that

g>U vba~k…

~vak2vbk!

1

dU ~103!

for bÞa; this condition is clearly best satisfied if all band
b are remote in frequency from the band associated with
principal componentFak

(0) . Finally, the second derivative
condition, together with Eq.~100!, requires that

g2>pU 1

vakd
2

]2vak

]ki]kjU ~104!
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for arbitrary i and j. Like the requirement~103!, this is most
easily satisfied if all bands other thana are ‘‘remote.’’ Of
course, these requirements must be satisfied while still m
taining

h!1. ~105!

In fact, the requirements~102!–~104! are overly conserva-
tive, because in equation~65! we implicitly took f ak(r ,t
50) to vary over a single lengthL in all Cartesian direc-
tions; by setting out separate lengthsLx , Ly , andLz over
which f ak(r ,t50) varies in the indicated directions, th
above conditions can be made less restrictive for so
pulses. We do not write out those more general conditi
here.

Recalling the definition ofL and h @see Eq.~65!#, we
refer to the requirements~102!–~105! askinematical consis-
tency conditions.Given the pulse specification att50, and
the photonic band structure, it is easy to check whethe
not they are satisfied. Typically, the more remote in f
quency a band is from the other bands, the shorter the p
can be while still satisfying these conditions. If they hold
t50, then the dynamical equations~98! and ~100! can be
considered a good approximate description of the initial
namics fort.0. But ast increases we also require that th
solution of Eqs.~98! and~100! leads to an evolvingFak

(0) that
remains of order unity or less. This much more stringe
dynamical consistency conditionis discussed in Sec. VIII.
For the rest of this section we assume that all these con
tency conditions are satisfied.

We can amalgamate our dynamical equations at ord
h0, h1, andh2 by using

]Fak
(0)

]t
5h

]Fak
(0)

]t1
1h2

]Fak
(0)

]t2
1•••, ~106!

and likewise for the gradients ofFak
(0) ; we combine Eqs.~98!

and ~100! to find, to orderh2,

]Fak
(0)

]t
1~12m!vaa

i ~k!
]Fak

(0)

]r i
2

1

2
i
]2vak

]ki]kj

]2Fak
(0)

]r i]r j

2 ivaksFak
(0)2 iae0

2Fak
(0)uFak

(0)u250. ~107!

Making a change of variables to a moving frame witht̄[t

and r̄[r2(12m)vaa(k)t and dropping the overbars, w
obtain

] f ak

]t
2

1

2
i
]2vak

]ki]kj

]2f ak

]r i]r j
2 ivaks f ak2 iae0

2f aku f aku250

~108!

a nonlinear Schro¨dinger equation for the envelope functio
of the principal component.

We now consider the physics associated with this eq
tion. It describes a wave packet moving at a velocity
2m)vaa(k) relative to the lab frame, so from Eq.~101! it is
clear thatm characterizes the change in group velocity, d
to material dispersion, from that of the band structure ch
4-11
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acterized by a nondispersive refractive indexn(r ). We can
confirm the nature of the coefficientm, as well as the othe
coefficients we consider below, by looking at the limit of
uniform medium. In that limitn(r ) is uniform,n(r )5n, and
the Bloch functions reduce to plane waves that we take to
linearly polarized. Recalling the normalization conditions~9!
and ~10!, the fields are

Eak~r !5
êaeik•r

n
,

Hak~r !5
ĥaeik•r

cm0
, ~109!

wherek5uku5nv/c, and êa3ĥa5 k̂[k/k. In this limit we
find vaa(k)5ck̂/n from the general expression~47!, as ex-
pected, and from Eq.~101! we find

~12m!vaa~k!→c

n S 12
1

2
v

«8

«0n2D k̂. ~110!

Theexactgroup velocity in a uniform medium is determine
by the dispersion relationv5ckA«0 /«(v). For a uniform
medium with an«(v) characterized by Eq.~82!, we find a
group velocity magnitude dv/dk5(c/n)(1
1«8v/(2n2«0))21. Our limit ~110! agrees with this to low-
est order in the dispersion coefficientv«8/«0, as would be
expected from our scaling~90!. Of course, in a photonic
crystalvaa(k) will not be simply uniform in magnitude ask
varies, even neglecting material dispersion, andm will also
be a complicated function ofk as Bloch functions sample th
underlying material dispersion differently at differentk, ac-
cording to Eq.~101!. Nonetheless, since in a uniform m
dium m is typically much less than unity and represents
small correction to the group velocity, and because it is
2m) that appears as a multiplicative correction tovaa(k),
for typical photonic crystals material dispersion should re
resent a small correction as well. Of course, material disp
sion will enter to higher orders thanh2 if the derivation
leading to Eq.~108! is extended to a higher order; or,
material dispersion is physically more important for a giv
problem than the scaling~90! identifies, a more appropriat
scaling would have to be adopted. In either case a correc
to the group velocity dispersion term—the term involvin
]2vak /]ki]kj in Eq. ~108!—due to material dispersion wil
arise.

But we pass over these matters for now and neglect
terial dispersion for the rest of our discussion in this secti
setting«8(r )50. In the limit of a one-dimensional photoni
crystal, where we takeẑ to be both the direction of propaga
tion and the direction of crystal periodicity, equation~108!
reduces to

] f ak

]t
2

1

2
ivak9

]2f ak

]z2
2 ivaks f ak2 iae0

2f aku f aku250,

~111!
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wherevak9 5]2vak /](kz)2 is the group velocity dispersion
This result is in agreement with earlier work@12#, but ex-
tended to include the effective index modification term
volving s, which is discussed below. In the highe
dimensional equation~108!, the group velocity dispersion
term actually includes effects due to both group velocity d
persion and diffraction. In a uniform medium for whichv
5cuku/n only diffraction in fact survives; if we choose
wave packet centered atk5k0ẑ, we find

2
1

2
i
]2vak

]ki]kj

]2f ak

]r i]r j
→2

ic

2nk0
S ]2f ak

]x2
1

]2f ak

]y2 D ,

~112!

which will lead to the spreading in thexy plane of a wave
packet propagating in theẑ direction. For a true photonic
crystal, of course, in general]2vak /](kz)2 will not vanish at
k5k0ẑ, and that term will describe the group velocity di
persion that is absent in a uniform medium with no mate
dispersion. As well, of course, there is no guarantee that
tensor]2vak /]ki]kj has as one its principal axes the dire
tion in which the pulse is propagating; hence effects invo
ing group velocity dispersion and diffraction in a comp
cated way can easily arise.

To consider the physical significance of the other terms
our nonlinear Schro¨dinger equation, we note that for th
form ~66!–~68! assumed for our fields we have

^E~r ,t !3H~r ,t !&52«0e0
2uFak

(0)u2vaa~k!52uC~r ,t !u2ŝ

[I ~r ,t !ŝ ~113!

to lowest order, where the brackets^& indicate both a spatia
average over a unit cell and a time average over the pe
associated with the frequencyvak ; here we have defined

C~r ,t ![e0A«0vaa~k!Fak
(0) , ~114!

while vaa(k… denotes the magnitude ofvaa(k… and ŝ its di-
rection. In terms of this new fieldC(r ,t) our nonlinear
Schrödinger equation is

]C~r ,t !

]t
1vaa

i ~k!
]C~r ,t !

]r i
5

1

2
i
]2vak

]ki]kj

]2C~r ,t !

]r i]r j

1 ivaksC~r ,t !

1 i
a

«0vaa~k!
C~r ,t !uC~r ,t !u2,

~115!

where as mentioned above we have putm50.
To concentrate on the effect of the nonlinear term in t

equation, for the moment we neglect both thes term, which
results from a perturbation of the linear optical properti
and the group velocity dispersion term. Then, consider
propagation in theŝ direction, for a fieldC(r ,t) that is in-
dependent of time we find that equation~115! reduces to
4-12
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vaa~k!
]C~s!

]s
5 i

a

«0vaa~k!
C~s!uC~s!u2. ~116!

The assumption thatC(r ,t) is independent of time implies
that the full electric field is oscillating at the Bloch frequen
vak . Now we write the solution of Eq.~116! in terms of an
effective nonlinear refractive index coefficientn2,

C~s!5C~0!exp@ i ~n2I !~vaks/c!#, ~117!

where

n25
1

2«0c

a

vak
S c

vaa~k! D
2

. ~118!

The effects of the photonic crystal structure are appa
here. First, the coefficienta characterizes how the Bloc
function modulated by the envelope functionC(r ,t) is
‘‘samples’’ the underlying nonlinearity. Second, there a
two factors of@vaa(k)/c#21. The first can be traced back t
the form ~115! of the nonlinear Schro¨dinger equation tha
arises if the amplitude of the energy fluxI (r ,t) @essentially
C(r ,t)# is used as the fundamental field. It arises because
nonlinear coefficientn2 is referenced to the energy flu
while the nonlinearity itself depends on the electric fie
strength; for a given energy flux, the electric field strength
greater the smaller the group velocity. The second facto
@vaa(k)/c#21 appears through the solution of Eq.~116!, and
arises physically because the smaller the group velocity
more time fields spend experiencing a nonlinearity wh
propagating over a fixed lengths.

Only the second of these factors appears if we cons
the effect of a modified linear dielectric constant on t
propagation of light. Returning to Eq.~115! and now ne-
glecting the group velocity dispersion and the nonlinear
in place of Eq.~116! we find

vaa~k!
]C~s!

]s
5 ivaksC~s!, ~119!

and introducing the modificationñ to the effective index
@c/vaa(k)# by writing the solution of this equation as

C~s!5C~0!exp@ i ñ~vaks/c!#, ~120!

we identify

ñ5sS c

vaa~k! D . ~121!

Note thats and ñ can both be complex if the modificatio
«C(r ) to the linear dielectric constant is complex; the re
part of ñ is associated with a change in effective phase
locity, while the imaginary part ofñ describes the effect o
gain or loss on propagation.

We close this section by confirming that our expressio
~118! and ~121! for n2 and ñ, respectively, reduce to th
correct results in the limit of a uniform, nondispersive m
dium. Recalling thatvaa(k)5c/n in this limit, using the
Bloch functions~109! appropriate here, and evaluatinga and
s from their definitions~101!, we find
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n2→
3x3

eeee

4«0cn2
,

~122!

ñ→ «C

2«0n
,

where we have taken bothx3
eeee, the indicated component o

x3
i jkl associated with only the directionêa , and«C , the lin-

ear modification of the dielectric constant, to be unifor
The first of Eq.~122! is the well-known relation betweenn2
and x3 in a uniform medium, and the second is, for«C /«0
!1 @see equation~90!#, the expected correction to the inde
of refraction An21«C /«0'n1«C/2«0n due to a linear
modification in the dielectric constant.

VII. NUMERICAL EXAMPLES

In this section, we calculate and interpret the effect
nonlinearity, and gain or loss coefficients, of a typical ph
tonic crystal. While the above expressions can be applie
crystals of any dimensionality, here we consider the th
dimensional example of an fcc close-packed poly~methyl
methacrylate! ~hereafter PMMA! inverse opal. PMMA has a
refractive index of 1.49 and is taken to have ax3 nonlinear
susceptibility tensor characteristic of an isotropic mater
The band structure and photonic Bloch modes for the n
dispersive, linear, lossless limit were calculated using a
quency domain eigensolver@16#, with results shown in Fig.
2. We consider a pulse propagating in the~111! direction,
which in practice often corresponds to coupling at norm
incidence. Care must be taken since the high symmetry
the ~111! direction leads to degenerate bands. Although
did not treat degenerate bands in the formalism, a gene
zation of the argument leading to Eq.~99! shows that if
vab(k)•“ f ak is sufficiently small everywhere for all band
b degenerate with banda, then the nonlinear Schro¨dinger
dynamics of equation~115! will be valid for banda. One
way of satisfying this condition is to consider systems

FIG. 2. Band structure of a close-packed fcc photonic crys
consisting of air spheres in PMMA, plotted along high symme
lines. The frequency isn, anda is the distance between the cente
of neighboring spheres. For clarity, bands 1 through 4 betweeG
andL are labeled.
4-13
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which both“ f ak3vaa(k) is sufficiently small everywhere
andvab(k)•vaa(k) is zero for allb. The first condition can
be satisfied at least initially if the transverse width of t
pulse is sufficiently large; we assume we are dealing w
such pulses. The second can be satisfied if the modes w
the degenerate eigenspace are suitably chosen; the mode
be so chosen in the examples that follow. The general d
vation of pulse dynamics with a degenerate principal co
ponent requires a more thorough treatment, which we pla
include in a future publication.

In the calculations below, we consider a pulse charac
ized by a principal component associated with one of
lowest four bands. These consist of a doubly degenerate
electric band and a doubly degenerate air band. We note
the crystal has a reflection symmetry plane that contains
L point and thez axis @17#; for the sake of specificity we
choose the eigenstates of this reflection as bases within
of the degenerate eigenspaces, and refer to the states
reflection eigenvalues61 as the evenlike and oddlike state
respectively. This choice of states ensures thatvab(k)
•vaa(k) is zero for all b. In fact, the lowest four band
exemplify a special case for whichvab(k)•vaa(k) vanishes
for any choice of orthogonal modes within the degener
eigenspaces.

FIG. 3. Effective Kerr coefficienta vs wave vector along~111!
direction for close-packed air spheres in PMMA fcc crystal, plot
in units of aPMMA, the Kerr coefficient of uniform bulk PMMA.

FIG. 4. Effective gain or loss coefficients vs wave vector along
~111! direction for close-packed air spheres in PMMA fcc cryst
plotted in units ofsPMMA, the value for bulk uniform PMMA.
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In order to separate the effects due to reduced group
locities from those due to the concentration of the fie
within high nonlinearity, or high gain or loss media, we pl
both the mode sampling coefficientsa ands ~101!, and the
effective index coefficientsn2 ~118! and ñ ~121!. Due to
symmetry, bands 1 and 2 have identical such coefficients
do bands 3 and 4. In Fig. 3, we see the difference betwe
dielectric band and an air band. Ask nears the band edge a
L, in the lower bands the energy is concentrated more
more in the dielectric, while in the upper bands the energ
concentrated more and more in the air. As a result, the
fective Kerr coefficienta of the dielectric band increases an
that of the air band decreases. In addition, at wave vec
where the bands flatten out, the Bloch functions acquire
nature of standing waves rather than traveling waves, lead
to an increase in the integral of the fourth power of the Blo
function for a fixed normalization; this results in a slig
recovery in thea coefficient of the upper band before
reaches theL point. Note that as the upper band approach
G it becomes both degenerate with higher bands and nea
even higher bands; here the kinematic consistency condit
would require a longer and longer pulse to justify the scal
introduced in our derivation to be appropriate. In Fig. 4 w
observe somewhat similar qualitative features fors, as we
might expect. In Fig. 5, we plotñ. The factorc/vaa(k) leads
to divergences inñ as the bands flatten out, reflecting th
enhancement of the accumulation of phase and of gain
loss as light propagates more slowly through the crystal
Fig. 6 we plot the nonlinear indexn2. Here thec2/vaa

2 (k)
factor characterizing both the propagation time and field
hancement effects due to ‘‘slow light’’ completely dominat
the behavior ofn2 as the bands flatten out.

VIII. CONCLUSIONS

We have described pulse envelope function dynamics
photonic crystals, consideringx3 nonlinearities, as well as
linear material dispersion, gain and loss. The main results
equations~108! and ~115!. Equation~108! is a dynamical
nonlinear Schro¨dinger equation for the pulse envelope fun

,

FIG. 5. Effective gain or loss indexñ vs wave vector along
~111! direction for close-packed air spheres in PMMA fcc cryst

plotted in units ofñPMMA, the value for bulk PMMA.
4-14
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tion. The equation is derived using a multiple-scale analy
in which the pulse is approximated by an envelope funct
modulating a Bloch function as the carrier wave. Differe
terms in the equation clearly represent different physical p
nomena such as group velocity, group velocity dispers
diffraction, self-phase modulation, carrier frequency sh
and gain or loss. The coefficients of the different terms
pend on the underlying photonic crystal through integrals
powers of the modulated Bloch function over the unit cell
the crystal in the linear, lossless, nondispersive limit. Th
we can identify the degree to which a physical effect mo
fies the propagation of a pulse by calculating the way
carrier photonic Bloch function spatially samples the app
priate property of the underlying crystal constituents. T
approach leverages the ease of calculation of the band s
ture of the simplified crystal, for the Bloch functions in th
absence of nonlinearity, loss and dispersion can then be
to determine the consequences of precisely those effect
pulse propagation. As an example, we have cast the dyn
cal equation~108! into equation~115! for the energy flux
amplitude, allowing us to identify and interpret an effecti
nonlinear indexn2, as well as an effective complex shift o
the linear indexñ, which could account for gain or loss a
well as electro-optic shifts in the linear index. The effecti
indices can vary significantly as one considers different c
rier Bloch functions even within the same band. We ha
identified and described the roles played by the vary
group velocity, field concentration, and standing wave nat
of the Bloch function as one scans through the Brillou
zone. Additionally, we have identified kinematical and d
namical consistency conditions that serve as quantita
measures of the applicability of the nonlinear Schro¨dinger
dynamics, suggest when new physics warrants inclusio
the analysis and indicate when different scalings are
quired.

A number of important generalizations will proceed fro
this work. Immediate generalization to the case of a princi
component from a degenerate band will yield dynamics t
are characteristic of the crossover to higher-dimensio

FIG. 6. Effective nonlinear indexn2 vs wave vector along~111!
direction for close-packed air spheres in PMMA fcc crystal, plot
in units of n2

PMMA , the value for bulk PMMA. We see thatn2 is
greatly enhanced near band edges, where group velocity ef
dominate.
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crystals, providing a qualitative departure from the more
miliar dynamics of one-dimensional Bragg gratings. Furth
more, while we have restricted our analysis in this work
the case of a single principal component, a study of the c
of two principal components—that of two excited puls
with different carrier modes—will also yield characteris
cally higher-dimensional dynamics. The study of two puls
at the same frequency with either identical or differing wa
vectors, and the study of two pulses at the same wave ve
but with slightly different frequencies, promise new physic
In one dimension, the latter case is used to describe coup
between modes at the upper and lower band edgesvia the
coupled mode equations, which yield gap soliton solutio
We plan to treat the generalization to three dimensions
future publication.

Further generalizations will involve the inclusion of oth
physical effects and scalings, such as underlying mate
birefringence, defect modes of the photonic crystal, nea
degenerate modes,x2 phenomena, and higher-order dispe
sion and nonlinearity. The latter two effects will inevitab
play a crucial role in the nonlinear optics of highe
dimensional photonic crystals, even if the single princip
component assumption made in this paper is valid. For w
we can expect that over some length and time scales—
identified by the consistency conditions—the nonline
Schrödinger equation will provide a good description of typ
cal nonlinear propagation and even gap soliton phenom
in general there is no analog of the stability of soliton so
tions of the one-dimensional Schro¨dinger equation in higher
dimensions. In such photonic crystals unchecked s
focusing can lead to the inevitable breakdown of the non
ear Schro¨dinger equation, and the consequent necessity
including higher dispersion and nonlinearity to properly d
scribe the physics. The approach developed here provid
straightforward way to identify the higher-order terms
physical relevance.

In summary, we have presented a general approach fo
derivation of nonlinear dynamical equations that describe
propagation of optical pulses in nonlinear photonic crysta
As an example we have considered the nonlinear Sc¨-
dinger equation limit appropriate for the envelope functi
modulating a single, nondegenerate photonic Bloch funct
But the approach is much more general than that, and t
cally will allow the determination of coefficients that cha
acterize the nonlinearity, dispersion, and gain or loss of
effective field or fields identified in terms of the sampling
the underlying physical properties of the photonic crys
components by the modulated Bloch function or functio
Thus, even before a detailed solution of the appropriate n
linear dynamical equations is addressed, much of the phy
of the nonlinear propagation, and its dependence on phot
crystal properties, can be immediately identified.
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